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Mean discharge frequency locking in the response of a noisy neuron model
to subthreshold periodic stimulation
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Department of System and Human Science, Graduate School of Engineering Science, Osaka University, Toyonaka 560-85
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~Received 8 February 1999!

Leaky integrate-and-fire neuron models display stochastic resonancelike behavior when stimulated by sub-
threshold periodic signal and noise. Previous works have shown that matching between the time scales of the
noise induced discharges and the modulation period can account for this phenomenon at low modulation
amplitudes, but not large subthreshold modulation amplitude. In order to examine the discharge patterns of the
model in this regime, we introduce a method for the computation of the power spectral density of the discharge
train. Using this method, we clarify the role of the distribution of the input phase at discharge times. Finally,
we argue that for large subthreshold inputs, mean discharge frequency locking accounts for the enhanced
response.@S1063-651X~99!50207-9#

PACS number~s!: 87.10.1e,07.05.Mh
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Experimental and theoretical studies have shown the p
sibility for noise to assist sensory neurons in the detection
weak signals@1#, through stochastic resonance~SR!. How-
ever, whether nervous systems do operate in conditions
miscuous for this phenomenon has not been completely
tablished yet. This question has motivated investigati
aiming to clarify conditions under which SR-like behavi
occurs in excitable systems and their models@2#.

In the conventional form of SR, the response of a parti
in a double-well potential to a weak periodic signal becom
maximal when the mean rate of interwell jumps, induced
noise alone, is close to the modulation frequency~for re-
views on SR see@3#!. This phenomenon is referred to a
time-scale matching.

In a similar way, time-scale matching has been propo
as one possible mechanism underlying SR-like behavio
excitable systems@4–7#. The present work shows that, i
excitable systems, as in static threshold devices and bist
systems@8#, another mechanism, namely, mean discha
frequency locking may be responsible for noise enhan
response to large subthreshold modulations. To this end
consider the periodically forced noisy leaky integrate-a
fire model~LIFM !:

dV~ t !5S 2
V~ t !

t
1m1A sin~Vt1u! Ddt1A2D dW~ t !

~1!

for V(t),S0. If V(t)5S0 thenV(t1)5V0,S0. In Eq.~1!, V
represents the membrane potential,t represents the charac
teristic membrane charge-discharge time,mt represents the
resting potential,S0 represents the threshold, andV0 repre-
sents the post-discharge potential.A, V52p/T, andu are,
respectively, the input amplitude, angular frequency, and
tial phase;D is the noise intensity andW(t) is the standard
Wiener process, whose formal derivative is white Gauss
noise. The output of this model consists of the sequenc
pulses generated at each discharge.

Periodic forcings are classified as endogenous and e
enous depending on whether the phase of the signal is
PRE 601063-651X/99/60~1!/33~4!/$15.00
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to some fixed value after each firing or not@9#. For endog-
enous forcing, the spike train forms a renewal process
cause interspike intervals~ISIs! are independent and ident
cally distributed random variables. Therefore, the pow
spectral density~PSD! of the spike train is given by@4,10,7#:

Pr~v!5
1

p^t& S 11
ĩ ~v!

12 ĩ ~v!
1

ĩ ~2v!

12 ĩ ~2v!
D , ~2!

where i is the ISI distribution,̂ t&5*0
`t i (t)dt is the mean

ISI, and

ĩ ~v!5E
0

`

i ~ t !exp@ j vt#dt. ~3!

The signal to noise ratio~SNR!, denoted byS1, is then given
by @10,7#

S15p^t&max$Pr~v! :0.93<v<1.07 V%. ~4!

It has been shown that the LIFM with endogenous forc
displays SR-like behavior in the sense thatS1 goes through a
maximum as the noise is increased@10#. However, a system-
atic investigation of the effect of signal amplitude reveal
that, for large subthreshold modulation, the optimal no
level does not correspond to the value predicted by tim
scale matching@7#. For instance, for the parameters in@10#,
S1 is maximal atD.2.531026 @(mV)2/(ms)# ~upper panel
Fig. 1!, whereas, in the absence of modulation, the mean
equalsT for a noise intensityD.1.931024 @~mV!2/(ms)].
The discrepancy between these values indicates that t
scale matching does not account for the enhanced resp
of the system.

In order to elucidate the mechanisms underlying this
fect of noise, we examine two issues:~i! whether a similar
phenomenon occurs for exogenous forcing and~ii ! whether a
mechanism other than time-scale matching can accoun
the SR-like behavior in this model.

The first issue is related to the fact that for suprathresh
forcing the phase of the input at the discharge time~hence-
R33 ©1999 The American Physical Society
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forth referred to as the discharge phase! plays a prominent
role in determining the response of the system@11#. There-
fore, for large subthreshold signals, it could also stron
influence discharge train characteristics. However, at
stage, the studies of the response of the LIFM in the
quency domain have mainly dealt with the endogenous fo
ing. In the case of exogenous forcing, the pulse train emi
by the model no longer forms a renewal process, so
neither the PSD nor the SNR can be evaluated by Eqs~2!
and ~4!. The first part of this paper is devoted to the dev
opment of a method for the computation of these quanti
for the exogenously forced LIFM. The approach presen
here extends the analysis performed in the time-domain
@7#, which takes into account the distribution of the inp
phase at discharge times~henceforth referred to as the pha
distribution!.

Power spectral density of exogenously forced LIFM.As-
suming that the LIFM fires at a phaseu, we denote byg(tuu)
the distribution of the next ISI. The conditional densityg
corresponds to the probability density function of the fir
passage time of an Ornstein-Uhlenbeck process throug
suitable boundary, and can be evaluated numerically as
solution of an integral equation. In@7#, the phase distribution
h and the ISI distributioni were derived fromg for the time
domain analysis. For the frequency domain, we show that
autocorrelation and the PSD of the spike train can also
computed from the conditional densitiesg and the phase dis
tribution h.

More precisely, assuming that a reference discharge
curs at a phaseu, we denote byl (tuu)dt the probability to
have a discharge in the following interval (t,t1dt). We
have

l ~ tuu!5 (
n51

`

l n~ tuu!, ~5!

wherel n(tuu)dt is the probability for thenth discharge fol-
lowing the reference event to be in the interval (t,t1dt).
Thus l 1(tuu)5g(tuu), and forn>2 we have

FIG. 1. SNR for endogenous~upper panel! and exogenous
~lower panels! forcings. All three ordinates are dimensionless, wh
all three abscissae represent noise intensity in@(mV)2/(ms)#. Pa-
rameters:S051 mV, T520 ms, t51 ms, m50.97 V/s, andA
50.03 V/s.
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l n~ tuu!5E
0

t

g~ t2uu@u1Vu# !l n21~uuu!du, ~6!

where the square brackets in@u1Vu# indicate that this
quantity is taken modulo 2p. Using the phase distributionh,
we obtain the autocorrelation function of the spike trainL(t)
as

L~ t !5E
0

2p

h~u!l ~ tuu!du. ~7!

For large t, the correlation between discharges decays
L(t) tends to theT-periodic functionQ(t), given by

Q~ t !5
2p

^t& E0

2p

h~@u1Vt# !h~u!du. ~8!

Thus, we can writeL(t)5R(t)1Q(t), with R decaying to
zero for larget. Finally, the PSD of the discharge train, d
noted byP(v), is derived fromL as @12#

P~v!5
1

p^t&
„11L̃~v!1L̃~2v!…

5
1

p^t& S 11R̃~v!1R̃~2v!12p(
n

qnd~v2nV! D ,

~9!

where^t& is the mean ISI,L̃ andR̃ are defined as in Eq.~3!,
and theqn are the coefficients of the Fourier expansion ofQ,
i.e.

qn5
1

TE0

T

Q~ t !e2 inVtdt. ~10!

In this way, the SNR can be defined as

S5
2pq1

11R̃~V!1R̃~2V!
. ~11!

We also consider the following quantity which is the rat
between the area of thed function in the PSD at the modu
lation frequency, and the base value at large frequen
~corresponding to the PSD of the Poisson impulse proc
with same mean ISI!:

S* 52pq1 . ~12!

One remarkable difference between the PSDs for end
enous@Eq. ~2!# and exogenous@Eq. ~9!# forcings is that the
latter has peaks of infinite height at the modulation freque
and its harmonics, whereas the former has peaks of fi
height near the modulation frequency. This difference ste
from the fact that the autocorrelation function of the renew
process settles at a constant value, whereas for exoge
forcing it is asymptotically periodic. This periodicity reflec
the correlation introduced by the stimulation. Because of
difference in the definitions of the SNRs, it is not possible
compare them quantitatively, however, it is possible to co
pare the optimal noise level that maximizes each of them
see whether they correspond.
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SR-like behavior in the exogenously forced LIFM.As
stated previously, the frequency domain analysis of
forced LIFM had been restricted to endogenous forc
@7,10# so that, in the first place, we examined whether S
like behavior was also present for exogenous stimulat
Numerical computations@13# of the SNRsSandS* for sub-
threshold inputs showed that both quantities are maxima
some intermediate noise intensities. The lower panels in
1 illustrate the humped shaped curves of noise versusS and
S* . Thus the presence of SR in the forced LIFM does
depend on the type of forcing. However, the SNRs for ex
enous forcing reach their maxima at significantly larger no
intensities than for endogenous forcing. This difference
sults from the fact that endogenous forcing renders the
tem more sensitive to fluctuations, thus leading to a fa
deterioration of the SNR with noise. Indeed, due to the
setting of the input phase at each discharge, noise indu
variability in the discharge times translates into a decreas
the regularity of the input signal itself; in fact, the LIFM i
forced by successive sequences of sinusoids, all startin
the same phase, but with variable length. As the noise
increased, so does the variability of the input seque
lengths and, consequently, the overall input departs fro
periodic signal leading to a reduced regularity of the sp
train.

Mean discharge frequency locking.The SR-like behavior
in the LIFM with exogenous forcing occurs at noise leve
that are close to time-scale matching. Therefore, the rese
of the input phase in the endogenously forced LIFM a
counts in part for the lowering of the optimal noise level
comparison with the value predicted by time-scale match
However, even for exogenous forcing, time-scale match
is not entirely satisfied. In the following, we show that a
other mechanism accounts for the enhanced response o
system.

Schematically, the response of the LIFM is enhanc
through time-scale matching when its behavior in the pr
ence of forcing is close to that with noise alone~without
forcing!. This is the case when, for example, the mean
with noise alone matches the modulation period, leading
cooperative behavior between the two. For weak and s
subthreshold modulation, such effects account for the
hanced response of the system. However, for large s
threshold modulation, the forced noisy LIFMs are closer
systems undergoing suprathreshold forcing than to unmo
lated systems. In this case, noise enhances the respon
the system through a mechanism that differs from time-sc
matching.

Essentially, noise renders possible firing in the prese
of subthreshold forcing. In this sense, the effect of noise i
lower the system’s threshold. This implies that a large s
threshold modulation acts effectively as a suprathresh
forcing when noise is increased. This in turn can lead
more regular discharges as suprathreshold forcing can e
phase locked periodic discharges. In other words, the
sponse of the LIFM to large exogenous subthreshold mo
lation can resemble noisy phase locked discharge trains
some range of intermediate noise intensities. This rang
essentially determined by the distance between the input
plitude and the threshold rather than the characteristic t
scales of the system in the absence of modulation.
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Figure 2 illustrates this phenomenon. Each line represe
the evolution of the mean ISI of a forced LIFM for a give
input amplitude as the noise is increased. The thick solid
is the mean ISI for ‘‘spontaneous’’ firing, i.e., without modu
lation. The thin dashed line below all others is for sup
threshold forcing. All other lines represent subthreshold fo
ings, with amplitudes increasing from right to left. As e
pected, for suprathreshold forcing, the mean ISI stabilize
a finite value as the noise tends to zero, while the ot
curves tend to infinity. At large noise levels, all curves mer
into one, indicating that in this regime, the input plays litt
role in determining the response of the system; the firing
noise dominated. For the intermediate range of noise,
mean ISIs for subthreshold forcings take on two forms. F
low amplitudes (A50.0225 and 0.025), they decay rapid
much in the same way as forA50. As the amplitude is
increased, the curves present an inflection: first they
proach the mean ISI for suprathreshold forcing, and th
they decay along this curve. The larger the input amplitu
is, the more pronounced this phenomenon appears. Ind
for large enough subthreshold modulation, the mean ISI
plays a plateaulike flattening in the intermediate range
noise. In this regime, the LIFM fires with a mean ISI close
the modulation periodT. Furthermore, the ISIs are close toT,
and the phase distribution displays a marked peak; the fi
is almost one to one phase locked@6,14#. We refer to this
regime as mean discharge frequency locking. It is in t
range of noise, where the LIFM behaves like a noisy syst
forced by a suprathreshold modulation, that the SNR reac
its maximal value.

Besides illustrating the mechanisms that lead to an
hanced response, the curves in Fig. 2 also clarify the dif
ence between mean discharge frequency locking and ti
scale matching as well as mean switching frequency lock
in threshold devices. In time-scale matching, the respons
the system is near optimal when, say, the mean ISI of
unforced system equals the modulation period@6#. Similarly,
mean switching frequency locking occurs when the me
interthreshold-crossing intervals approach the modula
period @8#. However, in contrast to these results,~i! the flat-
tened plateaus in Fig. 2 occur for noise levels that are
nificantly below the one that yields a mean ISI equal to

FIG. 2. Mean ISÎ t& versus noise intensityD in @(mV)2/(ms)#
for exogenous forcing. The lines show^t& for forcings with ampli-
tudesA50, 0.0225, 0.025, 0.0275, 0.029, 0.03, 0.0314, and 0.
V/s from right to left. OnlyA50.032 V/s is suprathreshold. Th
arrow indicates the noise intensity yielding^t&5T for A50 ~where
T is the modulation period!. Same parameters as in Fig. 1.
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modulation period in the unforced system~indicated by the
arrow in the figure! and ~ii ! both the lower and higher end
of the plateaus shift progressively to lower noise levels as
signal amplitude approaches the threshold. These two c
acteristics further confirm that the mean discharge freque
locking and the resulting enhanced response of the LIFM
consequences of the proximity of the threshold rather t
matching between the mean ISI of the unforced system
the modulation period.

The responses of the deterministic LIFM to sinusoid
input are phase locking or quasiperiodic behavior. In theA-T
parameter plane, phase locking regions form character
bands, referred to as Arnold tongues. Their structure
been studied in@11#. To analyze the correspondence betwe
the mean discharge frequency locking~of the stochastic
model! and the Arnold tongue structure~for the deterministic
system!, we have computed the average number of firin
per cycle, and examined its dependence onA, T, and the
noise intensity. In the absence of noise, the thr
dimensional plots of the averaged number of firings per cy
on
e
ar-
cy
re
n
d

l

tic
as
n

s

-
le

againstA andT display a staircaselike shape with flat ste
corresponding to phase locking regions~not shown!. The ad-
dition of noise and progressive increase of its intens
smooths the staircaselike structure and, eventually, for la
noise, the structure is changed into a slope without flat p
teaus. Another effect of noise is to lower the boundaries
phase locking regions@15#. For the parameter set in Fig. 2
the lower boundary of the 1:1 locking region is close to t
threshold. With the addition of noise, this boundary progr
sively moves into the subthreshold region before the
locking plateau disappears, thus leading to the mean
charge frequency locking as was observed in Fig. 2.

In conclusion, our analysis of the response of the no
LIFM to large subthreshold modulation is hinged upon t
derivation of an expression for the PSD and the SNR of t
system. Using these quantities we showed that this sys
similarly to endogenously forced LIFMs, displays SR-lik
behavior. Finally we characterized the enhanced respons
the system in terms of mean frequency locking appearing
large subthreshold signals rather than time-scale matchin
tt.

s.

rom

T.

the
ns
@1# J.K. Douglasset al., Nature ~London! 365, 337 ~1993!; J.E.
Levin and J.P. Miller,ibid. 380, 165 ~1996!; X. Pei and F.
Moss, J. Neurophysiol.76, 3002~1996!; J.J. Collins, T.T. Im-
hoff, and P. Grigg,ibid. 76, 642 ~1996!.

@2# A. Longtin, A.R. Bulsara, and F. Moss, Phys. Rev. Lett.67,
656 ~1991!; A. Longtin, J. Stat. Phys.70, 309 ~1993!; X. Pei,
K. Bachman, and F. Moss, Phys. Lett. A206 61 ~1995!; J.J.
Collins, C.C. Chow, and T.T. Imhoff, Nature~London! 376,
236 ~1995!; D.R. Chialvo, A. Longtin, and J. Mu¨ller-Gerking,
Phys. Rev. E55, 1798~1997!; A. Capurroet al., ibid. 58, 4820
~1998!.

@3# F. Moss, D. Pierson, and D. O’Gorman, Int. J. Bifurcati
Chaos Appl. Sci. Eng.4, 1383 ~1994!; A.R. Bulsara and L.
Gammaitoni, Phys. Today49 ~3!, 39 ~1996!; L. Gammaitoni
et al., Rev. Mod. Phys.70, 223 ~1998!; K. Wiesenfeld and F.
Jaramillo, Chaos8, 539 ~1998!.

@4# A.R. Bulsara, S.B. Lowen, and C.D. Rees, Phys. Rev. E49,
4989 ~1994!.

@5# A.R. Bulsaraet al., Phys. Rev. E53, 3958~1996!.
@6# A. Longtin and D.R. Chialvo, Phys. Rev. Lett.81, 4012

~1998!.
@7# T. Shimokawa, K. Pakdaman, and S. Sato, Phys. Rev. E59,

3427 ~1999!.
@8# B. Shulgin, A. Neiman, and V. Anishchenko, Phys. Rev. Le
75, 4157~1995!.
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