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Mean discharge frequency locking in the response of a noisy neuron model
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Leaky integrate-and-fire neuron models display stochastic resonancelike behavior when stimulated by sub-
threshold periodic signal and noise. Previous works have shown that matching between the time scales of the
noise induced discharges and the modulation period can account for this phenomenon at low modulation
amplitudes, but not large subthreshold modulation amplitude. In order to examine the discharge patterns of the
model in this regime, we introduce a method for the computation of the power spectral density of the discharge
train. Using this method, we clarify the role of the distribution of the input phase at discharge times. Finally,
we argue that for large subthreshold inputs, mean discharge frequency locking accounts for the enhanced
response[S1063-651%99)50207-9

PACS numbds): 87.10+€,07.05.Mh

Experimental and theoretical studies have shown the pogte some fixed value after each firing or f&]. For endog-
sibility for noise to assist sensory neurons in the detection oénous forcing, the spike train forms a renewal process be-
weak signalgd1], through stochastic resonant®R). How-  cause interspike interval$Sls) are independent and identi-
ever, whether nervous systems do operate in conditions pra@ally distributed random variables. Therefore, the power
miscuous for this phenomenon has not been completely espectral densityPSD of the spike train is given bj4,10,7:
tablished yet. This question has motivated investigations - 5
aiming to clarify conditions under which SR-like behavior 1 i(w) i(—w)
occurs in excitable systems and their models Piw)= (t) ( 1 1-T(w) + 1-T(-w)

In the conventional form of SR, the response of a particle
ina _double-well potential to a We_ak perioo_lic signgl becomesyherei is the ISI distribution{t)= [t i(t)dt is the mean
maximal when the mean rate of interwell jumps, induced by|S|’ and
noise alone, is close to the modulation frequerifyr re-
views on SR seg3]). This phenomenon is referred to as - o
time-scale matching. i(w)ZJ i(t)exd jwt]dt. (©)]

In a similar way, time-scale matching has been proposed 0
as one possible mechanism underlying SR-like behavio_r Rrhe signal to noise rati@SNR), denoted bySL, is then given
excitable system$4-7]. The present work shows that, in [10,7]
excitable systems, as in static threshold devices and bistablg '
systems[8], another mechanism, namely, mean discharge Sl=7r<t)max{P,(w) :0.93< w=<1.07 Q}. (4)
frequency locking may be responsible for noise enhanced
response to large subthreshold modulations. To this end, wié has been shown that the LIFM with endogenous forcing
consider the periodically forced noisy leaky integrate-and-displays SR-like behavior in the sense tBaigoes through a
fire model(LIFM): maximum as the noise is increaddd]. However, a system-

atic investigation of the effect of signal amplitude revealed

V(t) that, for large subthreshold modulation, the optimal noise
s level does not correspond to the value predicted by time-
(1) scale matching7]. For instance, for the parameters[it0],

St is maximal aD=2.5x10"¢ [(mV)?/(ms)] (upper panel
for V(1) <S,. If V(t) =S, thenV(t")=V,<S,. InEq.(1),V  Fig. 1), whereas, in the absence of modulation, the mean ISI
represents the membrane potentiatepresents the charac- equalsT for a noise intensityp=1.9x 10"* [(mV)?/(ms)].
teristic membrane charge-discharge tinae; represents the The discrepancy between these values indicates that time-
resting potentialS, represents the threshold, aNg repre-  scale matching does not account for the enhanced response
sents the post-discharge potenti®d).Q=2=/T, and 6 are, of the system.
respectively, the input amplitude, angular frequency, and ini- In order to elucidate the mechanisms underlying this ef-
tial phase;D is the noise intensity an@/(t) is the standard fect of noise, we examine two issuds) whether a similar
Wiener process, whose formal derivative is white Gaussiaphenomenon occurs for exogenous forcing @ndvhether a
noise. The output of this model consists of the sequence ahechanism other than time-scale matching can account for
pulses generated at each discharge. the SR-like behavior in this model.

Periodic forcings are classified as endogenous and exog- The first issue is related to the fact that for suprathreshold
enous depending on whether the phase of the signal is resfetrcing the phase of the input at the discharge tifinence-

2

dV(t)= + u+AsinQt+ ) |dt+ 2D dW(t)
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125 t
In<t|e>=fog<t—u|[e+nu])lnfl<u|a)du, (6)

75

st

where the square brackets i@+ Qu] indicate that this
quantity is taken modulo 2. Using the phase distributidm

50

= we obtain the autocorrelation function of the spike trat)
0 as
104 10° 10+
D
0.09% 401 2
L(t)=J h(6)I(t|6)de. (7)
30m 0
0.08n
“ % 20m For larget, the correlation between discharges decays and
0.07% L(t) tends to theT-periodic functionQ(t), given by
10x
2 (2w
ooex - o PR o o+ Q(t)= 0} fo h([6+QtDh(e)d6. )
D D

FIG. 1. SNR for endogenougupper pangl and exogenous Thus, we can writd (t)=R(t)+ Q(t), with R decaying to
(lower panelgforcings. All three ordinates are dimensionless, while zero for larget. Finally, the PSD of the discharge train, de-
all three abscissae represent noise intensity(mV)?/(ms)]. Pa-  noted byP(w), is derived fromL as[12]
rameters:Sp=1 mV, T=20 ms,7=1 ms, u=0.97 V/s, andA
=0.03 V/s. 1 - -

P(w)=—F=(1+L(w)+L(—w))
forth referred to as the discharge phaptays a prominent m(t)
role in determining the response of the syster]. There-
fore, for large subthreshold signals, it could also strongly L = = _
influence discharge train characteristics. However, at this —w(t) 1+R(w)+R( wHZW; Gnd(w—na) ],
stage, the studies of the response of the LIFM in the fre- (9)
guency domain have mainly dealt with the endogenous forc- 5 5
ing. In the case of exogenous forcing, the pulse train emittedvhere(t) is the mean ISIL andR are defined as in Ed3),
by the model no longer forms a renewal process, so thaind theq, are the coefficients of the Fourier expansiorQpf
neither the PSD nor the SNR can be evaluated by Es. i.e.
and (4). The first part of this paper is devoted to the devel-

opment of a method for the computation of these quantities 1T —inOt
for the exogenously forced LIFM. The approach presented q”_ffo Q(e dt. (109
here extends the analysis performed in the time-domain in
[7], which takes into account the distribution of the inputIn this way, the SNR can be defined as
phase at discharge timéisenceforth referred to as the phase
distribution. 2m7q,
Power spectral density of exogenously forced LIFAg- S= TR +R(—Q) 1D

suming that the LIFM fires at a phasewe denote by(t| 6)

the distribution of the next ISI. The conditional densdy e also consider the following quantity which is the ratio
corresponds to the probability density function of the first-panyeen the area of the function in the PSD at the modu-
passage time of an Ornstein-Uhlenbeck process through |gtion frequency, and the base value at large frequencies

suitable boundary, and can be evaluated numerically as theorresponding to the PSD of the Poisson impulse process
solution of an integral equation. [i7], the phase distribution \yith same mean IS4

h and the ISI distribution were derived frong for the time
domain analysis. For the frequency domain, we show that the S*=270q;. (12
autocorrelation and the PSD of the spike train can also be
computed from the conditional densitiggind the phase dis- One remarkable difference between the PSDs for endog-
tribution h. enous[Eq. (2)] and exogenouEEq. (9)] forcings is that the
More precisely, assuming that a reference discharge odatter has peaks of infinite height at the modulation frequency
curs at a phasé, we denote byl(t|#)dt the probability to and its harmonics, whereas the former has peaks of finite
have a discharge in the following intervat,i+dt). We  height near the modulation frequency. This difference stems
have from the fact that the autocorrelation function of the renewal
process settles at a constant value, whereas for exogenous
- forcing it is asymptotically periodic. This periodicity reflects
I(t] 9)221 In(t]6), ) the correlation introduced by the stimulation. Because of the
difference in the definitions of the SNRs, it is not possible to
wherel, (t| #)dt is the probability for thenth discharge fol- compare them quantitatively, however, it is possible to com-
lowing the reference event to be in the intervalt¢dt).  pare the optimal noise level that maximizes each of them and
Thusl(t|8)=g(t|#), and forn=2 we have see whether they correspond.
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SR-like behavior in the exogenously forced LIFRs 40
stated previously, the frequency domain analysis of the
forced LIFM had been restricted to endogenous forcing
[7,10] so that, in the first place, we examined whether SR-
like behavior was also present for exogenous stimulation.
Numerical computationgl3] of the SNRsSandS* for sub-
threshold inputs showed that both quantities are maximal at
some intermediate noise intensities. The lower panels in Fig.
1 illustrate the humped shaped curves of noise veSsarsd
S*. Thus the presence of SR in the forced LIFM does not 0 : ,
depend on the type of forcing. However, the SNRs for exog- 10° 10° b 1o 10°
enous forcing reach their maxima at significantly larger noise
intensities than for endogenous forcing. This difference re- FIG. 2. Mean ISKt) versus noise intensit) in [(mV)?/(ms)]
sults from the fact that endogenous forcing renders the syser exogenous forcing. The lines shdw) for forcings with ampli-
tem more sensitive to fluctuations, thus leading to a fastetudesA=0, 0.0225, 0.025, 0.0275, 0.029, 0.03, 0.0314, and 0.032
deterioration of the SNR with noise. Indeed, due to the reV/s from right to left. OnlyA=0.032 V/s is suprathreshold. The
setting of the input phase at each discharge, noise inducedirow indicates the noise intensity yieldifig =T for A=0 (where
variability in the discharge times translates into a decrease if is the modulation period Same parameters as in Fig. 1.
the regularity of the input signal itself; in fact, the LIFM is
forced by successive sequences of sinusoids, all starting at Figure 2 illustrates this phenomenon. Each line represents
the same phase, but with variable length. As the noise ithe evolution of the mean ISI of a forced LIFM for a given
increased, so does the variability of the input sequencéput amplitude as the noise is increased. The thick solid line
lengths and, consequently, the overall input departs from & the mean ISl for “spontaneous” firing, i.e., without modu-
periodic signal leading to a reduced regularity of the spikdation. The thin dashed line below all others is for supra-
train. threshold forcing. All other lines represent subthreshold forc-

Mean discharge frequency lockinghe SR-like behavior ings, with amplitudes increasing from right to left. As ex-
in the LIFM with exogenous forcing occurs at noise levelspected, for suprathreshold forcing, the mean ISl stabilizes at
that are close to time-scale matching. Therefore, the resetting finite value as the noise tends to zero, while the other
of the input phase in the endogenously forced LIFM ac-curves tend to infinity. At large noise levels, all curves merge
counts in part for the lowering of the optimal noise level ininto one, indicating that in this regime, the input plays little
comparison with the value predicted by time-scale matchingrole in determining the response of the system; the firing is
However, even for exogenous forcing, time-scale matchingioise dominated. For the intermediate range of noise, the
is not entirely satisfied. In the following, we show that an- mean ISIs for subthreshold forcings take on two forms. For
other mechanism accounts for the enhanced response of themv amplitudes A=0.0225 and 0.025), they decay rapidly
system. much in the same way as f&k=0. As the amplitude is

Schematically, the response of the LIFM is enhancedncreased, the curves present an inflection: first they ap-
through time-scale matching when its behavior in the presproach the mean ISI for suprathreshold forcing, and then
ence of forcing is close to that with noise alofwithout they decay along this curve. The larger the input amplitude
forcing). This is the case when, for example, the mean ISlis, the more pronounced this phenomenon appears. Indeed,
with noise alone matches the modulation period, leading to #or large enough subthreshold modulation, the mean ISl dis-
cooperative behavior between the two. For weak and slowplays a plateaulike flattening in the intermediate range of
subthreshold modulation, such effects account for the eroise. In this regime, the LIFM fires with a mean ISI close to
hanced response of the system. However, for large sulihe modulation period. Furthermore, the ISIs are closeTp
threshold modulation, the forced noisy LIFMs are closer toand the phase distribution displays a marked peak; the firing
systems undergoing suprathreshold forcing than to unmodus almost one to one phase lockgdl14]. We refer to this
lated systems. In this case, noise enhances the responserefiime as mean discharge frequency locking. It is in this
the system through a mechanism that differs from time-scaleange of noise, where the LIFM behaves like a noisy system
matching. forced by a suprathreshold modulation, that the SNR reaches

Essentially, noise renders possible firing in the presencés maximal value.
of subthreshold forcing. In this sense, the effect of noise isto Besides illustrating the mechanisms that lead to an en-
lower the system’s threshold. This implies that a large subhanced response, the curves in Fig. 2 also clarify the differ-
threshold modulation acts effectively as a suprathresholénce between mean discharge frequency locking and time-
forcing when noise is increased. This in turn can lead toscale matching as well as mean switching frequency locking
more regular discharges as suprathreshold forcing can evole threshold devices. In time-scale matching, the response of
phase locked periodic discharges. In other words, the rethe system is near optimal when, say, the mean ISI of the
sponse of the LIFM to large exogenous subthreshold modudnforced system equals the modulation pefi®d Similarly,
lation can resemble noisy phase locked discharge trains fanean switching frequency locking occurs when the mean
some range of intermediate noise intensities. This range isterthreshold-crossing intervals approach the modulation
essentially determined by the distance between the input anperiod[8]. However, in contrast to these resulfiy, the flat-
plitude and the threshold rather than the characteristic timé&ened plateaus in Fig. 2 occur for noise levels that are sig-
scales of the system in the absence of modulation. nificantly below the one that yields a mean ISI equal to the
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modulation period in the unforced systdindicated by the againstA and T display a staircaselike shape with flat steps
arrow in the figure¢ and (ii) both the lower and higher ends corresponding to phase locking regign®t shown. The ad-
of the plateaus shift progressively to lower noise levels as thdition of noise and progressive increase of its intensity
signal amplitude approaches the threshold. These two chasmooths the staircaselike structure and, eventually, for large
acteristics further confirm that the mean discharge frequencwgoise, the structure is changed into a slope without flat pla-
locking and the resulting enhanced response of the LIFM aréeaus. Another effect of noise is to lower the boundaries of
consequences of the proximity of the threshold rather thaphase locking regiongl5]. For the parameter set in Fig. 2,
matching between the mean ISl of the unforced system anthe lower boundary of the 1:1 locking region is close to the
the modulation period. threshold. With the addition of noise, this boundary progres-
The responses of the deterministic LIFM to sinusoidalsively moves into the subthreshold region before the 1:1
input are phase locking or quasiperiodic behavior. INnARE  locking plateau disappears, thus leading to the mean dis-
parameter plane, phase locking regions form characteristicharge frequency locking as was observed in Fig. 2.
bands, referred to as Arnold tongues. Their structure has In conclusion, our analysis of the response of the noisy
been studied ifil1]. To analyze the correspondence betweerlLIFM to large subthreshold modulation is hinged upon the
the mean discharge frequency lockirigf the stochastic derivation of an expression for the PSD and the SNR of this
mode) and the Arnold tongue structuttor the deterministic  system. Using these quantities we showed that this system,
system, we have computed the average number of firingssimilarly to endogenously forced LIFMs, displays SR-like
per cycle, and examined its dependencefrl, and the behavior. Finally we characterized the enhanced response of
noise intensity. In the absence of noise, the threethe system in terms of mean frequency locking appearing for
dimensional plots of the averaged number of firings per cycldarge subthreshold signals rather than time-scale matching.
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